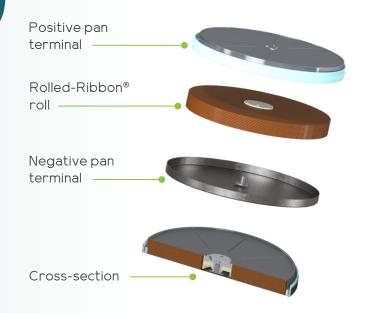
#### Rolled-Ribbon® Cell Construction

# Continuous contact between the edge of the current collectors and the cell terminals


Lowers impedance, lowers thermal resistance, vastly improves thermal exchange

#### Solid internal cell structure

Better suited to handle shock and vibration

#### Hard case construction

Rugged and durable, does not require additional protective hardware





### The NEW STANDARD for High-Power

High-Capacity Li-ion Batteries

#### Rolled-Ribbon® Stacked-Cell Battery Construction

#### Column structure:

Mechanically rugged battery pack

### Direct ohmic contact between compressed cell faces:

No need for tabs or welding

## Configurable series and parallel (S, P) arrangement of cells:

Tailored battery pack voltage and capacity

#### Re-usable battery pack hardware:

Simple cell removal and repurposing





www.rolled-ribbon.com

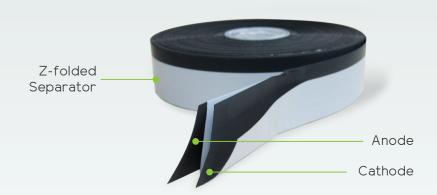


### The ROLLED-RIBBON® Cell Design



The stackable cell design lends itself to scalable, compact battery pack designs.



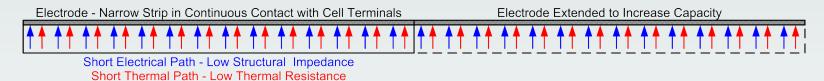

Large format cells maximize power and minimize both heat generation and thermal gradients.

### THE ROLLED-RIBBON® DESIGN ultimately leads

to an overall increase in the cell's in-cycle performance — its efficiency and enhanced rate— and its cycle life.

- ▶ Use more capacity
- ▶ Deliver higher power
- ▶ Charge faster
- ▶ Replace less frequently

#### Rolled-Ribbon® Roll Construction




A Rolled-Ribbon roll consists of long, narrow cathode and anode strips – "ribbons" – that are tucked into separate folds of a long length of separator folded into a Z-shape and together spiral wound.

The result is a roll having on each face a different electrode presenting its edge – a "continuous tab" – to make contact with the inside surface of the respective cell terminal.

For Cell Construction, see the back page.

Rolled-Ribbon® Cells have a "continuous tab" current collector contacting the cell terminal surface



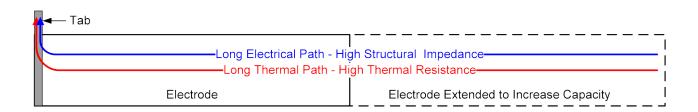
- Better power capability: fast-charging, high-power delivery
- Less waste heat generation: lower thermal management challenges and accompanying energy needs
- More efficient energy conversion: more capacity, energy, power

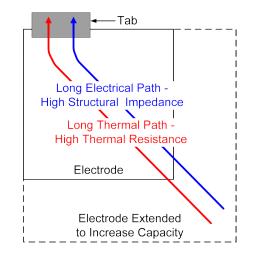
#### Maximum Power Delivery

- Charge at 2C (many times faster than other cells)
- Deliver at 5C

Low impedance

• Pulse (short-duration) up to 10C


#### **Unparalleled Thermal Properties**


- Low thermal resistance axially through the cell, extending through the battery cell stack
- Large thermal exchange surfaces on terminals of the cell
- Uniform heat distribution (no "hotspots")

#### Minimum Heat Generation

- Extend cycle life by naturally keeping cell temperature low
- Eliminate added thermal management systems and associated component and energy costs

**Conventional Cells** (cylindrical, pouch and prismatic, stacked or wound) use narrow tabs between the current collectors and the cell terminals



